Anticipatory Trading Against Distressed Mega Hedge Funds

by Vikas Agarwal, George O. Aragon, Vikram Nanda and Kelsey Wei

Discussant: Jay Kahn
Office of Financial Research
U.S. Department of the Treasury

FIFI, 2021

Q: Are distressed hedge funds front-run by other traders?

A very important question, especially recently.

A: Yes! Moreover, effects are large:

- ► For every 1% distressed MHF are expected to sell, non-distressed MHF sell 1.79%.
- Stocks excpected to be sold have -1.66% lower returns today.
- Frontrunning exposure decreases distresst MHF returns.

My comments are concerned with how the authors detect this frontrunning in the data.

The current approach:

1. Forecast trades of hedge funds.

$$\mathsf{HFTrades}_{i,j,t+1} \sim a_{i,t} + b_1 \times \mathsf{Own}_{i,j,t} + X'_{j,t}b_2$$

2. Classify some funds as distressed.

$$\Omega_t$$
: Returns < 0 and (or?) in bottom quartile.

3. Aggregate fitted forecasts for distressed MHF.

$$\mathsf{PTrade}_{j,t} = \sum_{i \in \Omega_t} a_{i,t} + b_1 \times \mathsf{Owns}_{i,j,t} + X'_{j,t} b_2$$

4. Regress outcomes on aggregated forecasts.

$$\mathsf{Trades}_{l,i,t} \sim \alpha_{l,t} + \beta_1 \times \mathsf{PTrade}_{l,t} + X'_{l,t}\beta_2$$

Variable	$HFTrades_{i,j,t+1}$	$Trades_{i,j,t}$
$Owns_{i,j,t}$	-0.0372*** (12.45)	
$PTrade_{i,j,t}$		0.002** (2.58)
Trades $_{i,j,t-1}$	-0.020*** (4.48)	0.007 (0.47)
R^2	0.023	0.018

Under what assumptions should this work?

Why is this problem hard?

Trades_{i,j,t} =
$$\alpha + \beta_1 \times \underbrace{F(Y_{j,t})}_{\text{Forecast sales}} + X'_{j,t}\beta_2 + \epsilon_{i,j,t}$$

Variable	$HFTrades_{i,j,t+1}$	$Trades_{i,j,t}$
$Owns_{i,j,t}$	-0.0372*** (12.45)	
$PTrade_{i,j,t}$		0.002** (2.58)
Trades $_{i,j,t-1}$	-0.020*** (4.48)	0.007 (0.47)
R^2	0.023	0.018

Why is this problem hard?

Trades_{i,j,t} =
$$\alpha + \beta_1 \times \underbrace{F(Y_{j,t})}_{\text{Forecast sales}} + X'_{j,t}\beta_2 + \epsilon_{i,j,t}$$

Under rational expectations:

$$\mathsf{E}_t[\mathsf{HFTrades}_{j,t+1}^D - F(Y_{j,t}) \mid Y_{j,t}] = 0$$

Variable	$HFTrades_{i,j,t+1}$	$Trades_{i,j,t}$
$Owns_{i,j,t}$	-0.0372*** (12.45)	
$PTrade_{i,j,t}$		0.002** (2.58)
Trades $_{i,j,t-1}$	-0.020*** (4.48)	0.007 (0.47)
R^2	0.023	0.018

Why is this problem hard?

Under rational expectations:

so long as $E[\epsilon_{i,i,t}Y_{i,t}] = 0$.

which implies:

$Trades_{i,j,t} = \alpha + \beta_1 \; \times$	$\underbrace{F(Y_{j,t})}$	$+X'_{j,t}\beta_2+\epsilon_{i,j,t}$
	Forecast sales (Unobserved)	

 $\mathsf{E}_t[\mathsf{HFTrades}_{i\,t+1}^D - F(Y_{i,t}) \mid Y_{i,t}] = 0$

 $E_t[Y_{i,t}(Trades_{i,t,t} - \alpha - \beta_1 \times HFTrades_{i,t+1}^D - X'_{i,t}\beta_2)] = 0$

Variable Owns_{i,i,t}

 R^2

 $PTrade_{i,i,t}$

Trades_{i,i,t-1}

HFTrades_{i,i,t+1}

-0.020***(4.48)

0.023

 $Trades_{i,i,t}$

0.002**

(2.58)

0.007

(0.47)

0.018

Why is this problem hard?

Trades_{i,j,t} =
$$\alpha + \beta_1 \times \underbrace{F(Y_{j,t})}_{\text{Forecast sales}} + X'_{j,t}\beta_2 + \epsilon_{i,j,t}$$

Under rational expectations:

$$\mathsf{E}_t[\mathsf{HFTrades}_{j,t+1}^D - F(Y_{j,t}) \mid Y_{j,t}] = 0$$

which implies:

$$\mathsf{E}_t[Y_{j,t}(\mathsf{Trades}_{i,j,t}^D - \alpha - \beta_1 \times \mathsf{HFTrades}_{j,t+1}^D - X_{j,t}'\beta_2)] = 0$$

so long as $\mathsf{E}[\epsilon_{i,i,t}Y_{i,t}] = 0$.

In	other	words.	we	need	an	instrument

Variable	$HFTrades_{i,j,t+1}$	$Trades_{i,j,t}$
$Owns_{i,j,t}$	-0.0372*** (12.45)	
$PTrade_{i,j,t}$		0.002** (2.58)
Trades $_{i,j,t-1}$	-0.020*** (4.48)	0.007 (0.47)
R^2	0.023	0.018

Choosing an instrument

$$\mathsf{HFTrade}^{D}_{j,t+1} = \sum_{i \ \mathsf{distressed}} \mathsf{HFTrade}^{D}_{i,j,t+1}$$

- 1. Current approach: Instrument for sales.
 - \blacktriangleright Hard to think of features **known at** t driving which stocks are sold t+1 that **don't matter** at t.
- 2. Alternative: Instrument for distress.
 - ▶ Ideally, distress *not associated* with MHF stock picking ability.
 - ▶ Broadest option: MHF returns excluding holdings of the particular stock, or excluding equities generally.
 - More robust: Distress due to counterparty exposure.
 Ex: Aragon and Strahan (2012): Lehman bankruptcy; Kruttli, Monin and Watugala (2019): Deutsche Bank liquidity shock

How should we think about excess returns?

Several things to think about:

- $ightharpoonup R^2$ on prediting trades \rightarrow Sharpe ratio understated.
- Also useful for thinking about frontrunning incentives:
 - 1. Are frontrunners getting out of the way or exploiting?
 - 2. Why don't distressed funds react sooner?
 - Could be a small

	Return	<i>t</i> -stat
α_t	-0.017^{***}	-2.90
$(MKT - RF)_t$	1.02***	13.66
SMB_t	0.99***	7.61
HML_t	-0.07	-0.76
MOM_t	-0.29^{***}	-4.03

HFTrades $_{i,j,t+1}$
-0.0372*** (12.45)
0.023

Conclusion:

This paper asks an important and interesting question!

The range of data the authors are bringing to bear is great!

The econometric problem of pinning down frontrunning is **hard**:

- I think tackling this problem head-on could add a lot to the paper.
- Taking an IV-like approach seems like an appropriate choice.