Entry and Exit in Treasury Auctions

by Jason Allen, Ali Hortaçsu, Eric Richert and Milena Wittwer

Discussant: Jay Kahn

Board of Governors of the Federal Reserve System

SEA, 2024

Disclaimer: The views expressed in this presentation are those of the speaker and do not necessarily represent the views of the Board of Governors of the Federal Reserve System.

Motivation: How concerned should we be about the rise of customer participation in auctions?

Substantial increase in customer participation in Canadian (and likely U.S.) Treasury auctions.

Simultaneous drop in primary dealer participation.

What effect does this have on prices in the auction?

Key idea: Competition vs. variance.

- Develop a detailed model of the Treasury auction process, with a focus on entry and exit.
- Features primary dealers (must bid at every auction) and customers (decide each auction).
- Non-trivial strategic interaction between dealers and customers.

Estimate this model on the Canadian Treasury auction data. Examine counterfactuals with:

- Additional dealers (designed to explain change in customer participation).
- Additional customers (illuminates competition/variance trade-off).
- Reshuffling of auction supply (how to improve prices and decrease variance).

Alternative motivation: Why do we need designated primary dealers?

Can think of a few plausible answers...

- (relationships) Know customers and known by customers in the secondary market.
- (inventories) Can hold newly issued Treasuries while they find buyers.
- (specialization) Font of information for central bank and customers.

But these are only tangentially related to primary dealers' responsibilities.

This paper:

(participation requirement) Presence at every auction helps decrease price volatility.

What I'm going to do today:

- Bumble through the model.
- Discuss the role of the secondary market.
- Look at driver of customer demand.
- Discuss counterfactual debt management policy in historical context.

Intuition of the model

CAUTION: I am **not** an auction theorist.

Dealers and customers bid on Treasuries for which they have **private valuations.**

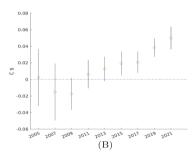
Drawn from two separate IID distributions which vary over auctions.

Two key elements:

- 1. Dealers and customers both have fixed costs to participate in the auction.
 - Dealers pay up front for the full year, customers pay as they go.
 - Dealers are overrepresented in auctions with bad "fundamentals."
 - Dealer demand supports price because their fixed costs are sunk.
- 2. Within the auction, dealers have access to customer bids.
 - This leads to bid shading by the dealers, offering to increase their odds of winning.
 - Commensurate strategic response from customers.

Two effects:

- As customers enter the auction, dealers bid shading decreases, decreasing borrowing cost.
- ▶ But when customers pull back, prices fall non-linearally so expected cost of borrowing is higher.


What about the secondary market?

CAUTION: I am not an auction theorist.

Tough for me to think about the primary market without the secondary market.

- Dealers are holding Treasuries to sell to customers later on.
- Customers valuation may also be disciplined (in part) by the secondary market.

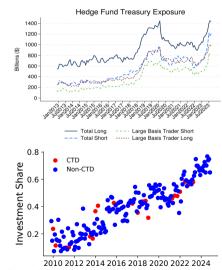
One reason this might be hard: dealers' inference from customer bids

Part way: What happens if dealers and customers have to draw from the same distributions?

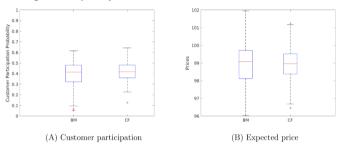
- Would dealers be better off as customers?
 - Tradeoff between participation and shading?

The role of customer demand

Motivation begins with rise of HFs in Treasury markets.


- In U.S. much of this rise is due to cash-futures basis trade (Barth and Kahn, 2021; Banegas et al., 2021).
- Much smaller but growing trade in Canada (Uthemann and Vala, 2024).

Is this also driving the increase in hedge fund participation in Treasury auctions?


- Basis trade volumes should be concentrated in one Treasury, the cheapest-to-deliver.
- Look at 2-year Treasuries that are the CTD at issuance.
 - No clear pattern.

Expansion of investment fund participation similar across maturities in U.S.

However, from 2010 to 2024, went from 18 PDs to 24.

Counterfactual debt management policy: More issuance in auctions customers like less.

Current policy on debt management: Regular and predictable (don't tailor to cutomer demand).

- Garbade (2007) covers how this emerged from uncertainty about future auction schedules.
 - Dealers could not get liquidity lined up in advance.

Previous strategy had been *tactical*: offering securities that customers wanted.

- ▶ This sometimes led to sudden dry ups in demand (Garbade (2021), Kahn and Nguyen (2022)).
- Allocating to auctions where there is not customer demand tilts against these pressures.
 - ► However, still leaves the future auction schedule uncertain.

Conclusion

This is an exceptional paper with a lot going on.

- Fantastic data, interesting questions, important policy implications.
- Additional counterfactuals helpful to understand what's driving the results in a complex model.
 - However, I'm largely nitpicking around the edges here.
- Looking forward to seeing more of this project in the future!