The Ring-Fencing Bonus

by Irem Erten, Ioana Neamtu and John Thanassoulis

Discussant: Jay Kahn

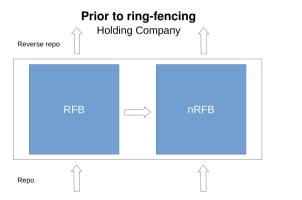
Board of Governors of the Federal Reserve System

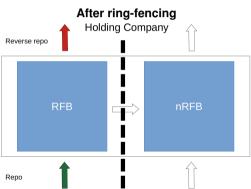
NFA, 2023

Disclaimer: The views expressed in this presentation are those of the speaker and do not necessarily represent the views of the Board of Governors of the Federal Reserve System.

Q: How does a change in firm boundaries affect risk-taking?

Specifically: How does ring-fencing affect risk-taking?


This paper: Use repo market to argue (among other things):


- RFBs are safer and took less risks after ring-fencing:
 - Repo rates fall for the RFB.
 - Reverse-repo rates rise for the RFB.No conclusive results for non-RFB (?).
- ▶ Show an *even lower* rate for RFBs during Covid crisis.
- Present evidence this is because of different behavior, not guarantees:
 - Changes occur after implementatioon, not announcement.
 - Associated with changes in proxies for risk and accounting variables.

What I'm going to do:

- 1. Talk briefly about the setting and results.
- 2. Suggest places to look for more identification.

In a nutshell:

How should we interpret results for nRFB?

What should our null be? A proposal:

- RFB becomes safer, nRFB becomes riskier.
- Holding company stays the same.

Given the above null, nRFB subsidiary seems like a key part of the story.

Repo rate	(1)	(2)	(3)	(4)	(5)
$\begin{array}{l} \text{Treated} \times \text{Event} \times \text{RFB} \\ \text{Treated} \times \text{Event} \times \text{nRFB} \end{array}$	-0.022*** -0.023***	-0.035*** -0.006***	-0.024*** 0.001	-0.021*** 0.002**	-0.023*** 0.002***
Dealer and credit FEs Dealer and macro controls Deal controls		Yes	Yes Yes	Yes Yes Yes	Yes Yes Yes

- Authors' interpretation: "...cannot in general rule out the null that the borrowing costs of the nRFB are unchanged..."
- Alternative interpretation: riskiness of the nRFB goes down, but this is captured by changes in the dealer's situation.

Basic idea of identification (unsecured lending)

Imagine that borrowers have all the bargaining power. Then:

Repo rate_t = Risk-free rate_t +
$$\frac{p}{1-p}$$
 × Risk-free rate_t

If I look at two different borrowers, then this will be a function of:

- Outside option of lenders (risk-free rate), likely constant at a lender/day level.
- Probability of default (object of interest)

This comparison is more complex for repo markets than for unsecured markets Imagine that borrowers have all the bargaining power. Then:

Reporate_t = Risk-free rate_t +
$$\frac{p}{1-p}$$
 × $\left[\text{Risk-free rate}_t - (1+h) \frac{E[\text{Price}_{t+1}|\text{Default}]}{\text{Price}_t} \right]$

If I look at two different borrowers, then this will be a function of:

- Outside option of lenders (risk-free rate), likely constant at a lender/day level.
- Probability of default (object of interest)
- Haircut on the transactions.
- ► Underlying collateral loss given default.

Authors know this, and include appropriate controls.

This comparison is more complex for repo markets than for unsecured markets Imagine that borrowers have all the bargaining power. Then:

Reporate_t = Risk-free rate_t +
$$\frac{p}{1-p}$$
 × $\left[\text{Risk-free rate}_t - (1+h) \frac{E[\text{Price}_{t+1}|\text{Default}]}{\text{Price}_t} \right]$

If I look at two different borrowers, then this will be a function of:

- ▶ Outside option of lenders (risk-free rate), likely constant at a lender/day level.
- Probability of default (object of interest)
- Haircut on the transactions.
- ► Underlying collateral loss given default.

Authors know this, and include appropriate controls.

However, this not only lead to different level of repo rates, but also different slope to default risk.

- This gives some extra opportunities for identification the authors could exploit.
 - For instance, triple difference: high vs. low price volatility collateral for RFBs vs. others before vs. after.

This comparison is more complex for repo markets than for unsecured markets Imagine that borrowers have all the bargaining power. Then:

Reporate_t = Risk-free rate_t +
$$\frac{p}{1-p}$$
 × $\left[\text{Risk-free rate}_t - (1+h) \frac{E[\text{Price}_{t+1}|\text{Default}]}{\text{Price}_t} \right]$

If I look at two different borrowers, then this will be a function of:

- ▶ Outside option of lenders (risk-free rate), likely constant at a lender/day level.
- Probability of default (object of interest)
- Haircut on the transactions.
- ► Underlying collateral loss given default.

Authors know this, and include appropriate controls.

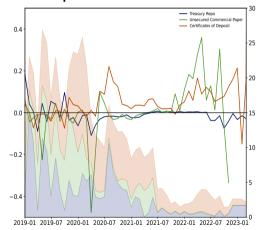
However, this not only lead to different level of repo rates, but also different slope to default risk.

- This gives some extra opportunities for identification the authors could exploit.
 - ▶ For instance, triple difference: high vs. low price volatility collateral for RFBs vs. others before vs. after.
- Could a formula like this be used to look at economic significance?

Note that for safe collateral in normal times, default risk is hard to detect

For most gilt collateral most of the time:

- ► Safe return in default ≈ risk-free rate.
- ► Trades are overnight, little time to default.


Expect U.S. repo rate even for a risky borrower *usually* pretty close to the average.

Automatic stay?

This makes the authors' results on the Covid crisis very important.

 Effect on RFB rates almost doubles in March 2020 when collateral is riskier and risks more salient

Example: Credit Suisse N-MFP data

Haircuts are an important contractual detail just like interest rates

$$\frac{\mathsf{Repo}\;\mathsf{rate}_t = \mathsf{Risk-free}\;\mathsf{rate}_t + \frac{p}{1-p} \times \left[\mathsf{Risk-free}\;\mathsf{rate}_t - (1+h)\frac{E[\mathsf{Price}_{t+1}|\mathsf{Default}]}{\mathsf{Price}_t}\right]}{\mathsf{Price}_t}$$

Some people think of haircuts as responding exclusively to collateral.

► (I think this is because of the extreme example of the U.S. tri-party market?)

More recent results suggest this isn't the case:

- Julliard et al. (2022) find that haircuts in the U.K. are higher for lower-rated borrowers and riskier counterparties like hedge funds.
- Hempel et al. (2023) find similar tiering in the U.S. non-centrally cleared bilateral market.

A higher haircut can protect you from default (possibly better?) than a higher interest rate.

Do haircuts respond to ring-fencing?

Other thoughts:

1. What about comparison to cleared repo rates?

- ▶ These are tossed because they don't have default risk, but that is an advantage.
- **Comparison:** same borrower, same collateral, same day, different market .

2. What about inter-affiliate flows?

- How much liquidity is moving between the RFB and nRFB after the reform?
- Interesting given research like Correa, Du and Liao (2020) and Caglio, Copeland and Martin (2021).
 - Hard to find variation in organizational structure like this.
 - Do interaffiliate flows respond to fill a gap?

Conclusion

- 1. This paper covers a seriously underexplored setting:
 - In looking into this, I'm surprised how little academic work has been done.
 - Kudos for the authors for filling that gap!
- 2. Uses a rich dataset to provide answers to an important question:
 - Hopefully I've suggested useful ways to exploit it further, however...
- 3. There is already a lot in this paper!
 - Both I and the authors are only covering a fraction of the results.
 - Read for more!